IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

International Journal of Solids and Structures 41 (2004) 3961-3975

Analysis of localization in frame members with plastic hinges

’ . ’b’ . . 7’ ’b . 7’ ’
Maria Eugenia Marante *>*, Ricardo Picon *°, Julio Florez-Lopez *
* Department of Structural Engineering, Faculated de Ingenieria, University of Los Andes, Mérida 5101, Venezuela

° Department of Structural Engineering, Lisandro Alvarado University, Barquisimeto, Venezuela

Received 14 February 2003; received in revised form 30 January 2004
Available online 19 March 2004

Abstract

This paper proposes a general criterion of localization for frame members. A frame member is assumed to be the
assemblage of an elastic beam-column and two plastic hinges at the ends of the member. Each plastic hinge presents
plastic softening behavior under bending and axial forces. In this case, localization refers to the concentration of plastic
rotation within a plastic hinge while the other one unloads. The localization criterion is obtained from the analysis of
the problem that defines the plastic multipliers of the hinges as a function of the member displacements rate. Then, a
simple uniqueness condition is derived for this problem. If the uniqueness condition is not verified, bifurcated solutions
with localization are possible, hence the localization criterion. This criterion is applied in three particular cases for
which analytical solutions are obtained and discussed. Finally the numerical implications of the localization criterion
are discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Reinforced concrete or steel framed structures can show significant softening if they are subjected to
overloads. In the former case, softening is the result of concrete cracking while in the latter this effect is
mainly due to local buckling. These degrading phenomena: extensive plasticity, cracking and local buckling
can be lumped at plastic hinges (see for instance, Inglessis et al., 2002; Marante and Florez-Lopez, 2003).

In framed structures, as well as in continuum media, softening is associated to the phenomenon of
localization. Localization in framed structures takes the form of transfer of energy dissipation amongst
inelastic hinges, i.e. under monotonic loading, there is a process of unloading in some of the hinges while
the remaining hinges continue to increase their plastic rotations, damage and energy dissipation. In frames,
as well as in continuum media, structural collapse is preceded by localization. Therefore the understanding
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of this phenomenon is very important for the analysis of structures such as buildings or bridges subjected to
earthquake or blast loadings.

Localization in framed structures presents an important difference with respect to the case of a con-
tinuum. In the latter, there has been identified only one localization mode: transfer of plastic strains to a
narrow band with strain rate discontinuities (if time-independent plasticity is being considered). In the case
of frames, the transfer of plastic rotations can occur in two different ways: transfer amongst the hinges
around a node, as indicated in Fig. 1a, or transfer between the hinges in the same frame member (Fig. 1b).
The procedures for the analysis of both kinds of localization effects are different. This paper only considers
the latter case, i.e. localization in a frame member.

Localization in framed structures with plastic hinges has been studied in the past (see Maier et al., 1973;
Bazant and Cedolin, 1991; Bazant and Kazemi, 1994; Bazant and Jirasek, 1996; Jirasek, 1997; amongst
others). The present paper takes up the subject considered by Jirasek (1997). In that paper, the conditions
for localization within a frame member with linear softening and without inelastic shortening were con-
sidered. Then, these results were used to study the postpeak behavior of some simple but representative
structures. The present paper generalizes the results obtained in Jirasek (1997) by including general non-
linear softening and inelastic shortening effects in the frame member.

All these studies and the present paper deal with the problem of localization due to plasticity. Another
related subject is the problem of localization due to buckling of structures (see for instance Pierre and Plaut,
1989; Zingales and Elishakoff, 2000). In that problem the analysis is carried out in a different framework,
beam theory, and the nonlinearities that produce localization are of geometrical nature.

The procedure followed for localization analysis in the present paper differs from the one used in Jirasek
(1997). In Nguyen and Bui (1974), a condition for the well-posedness of a quite general class of continuum
plasticity models was proposed. This condition assures that a unique stress rate and internal variable rate
are associated to any given strain rate. In Nguyen and Bui (1974) the problem of framed structures, plastic
hinges or localization was not considered. However, it is shown in this paper that the general procedure
of Nguyen and Bui, if adapted to the frame problem, leads to a simple, general and powerful method for
the analysis of localization in this kind of structures.

The paper is organized as follows. In the second section, a model of the behavior of plastic hinges with
softening is introduced. Three particular cases of plastic hinges within this general framework are pre-
sented. The first case corresponds to the linear softening hinge considered in Jirasek (1997). The second
example corresponds to a plastic hinge with nonlinear softening, but still without axial shortening. The
third example generalizes the linear model in Jirdsek (1997) by the inclusion of the axial force effect.

In Section 3 of the paper, the equations that describe the behavior of a frame member with two plastic
hinges are described. In Section 4, the condition for localization within a single frame member is derived.

(a)

unloading

loading

(b)

loading

Fig. 1. (a) Localization across a node and (b) localization across a frame member.
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First, the plastic model in the more general case is considered. Later, each one of the three particular cases
of plastic hinges is developed as example.

In Section 5 of the paper, the differences between localization in a frame member and across a node are
shown by the consideration of a simple framed structure and the numerical implications of the results
obtained in this paper are discussed.

2. Plastic hinges with softening under bending and axial forces
2.1. General model

Let us consider a plastic hinge subjected to a bending moment m and an axial force n. Compression
forces are assumed to be positive. The behavior of the plastic hinge is defined by a yield function f with
hardening-softening terms 4, /,, etc. and a normality rule as follows:

a_f. 5p_;6_f

f:f'(mvnahlah%"'); ép:/lal’)’ﬂ = van (1)

where ¢P is the plastic rotation rate, 5P represents the permanent elongation rate and 4 is the plastic
multiplier of the hinge. The plastic work w of the hinge is defined by:

W= m@® + nd® (2)
The hardening terms are assumed to depend on the plastic work:
]’ll :hl(w), hzihz(w), (3)

In the following sections, the localization conditions for three particular cases will be derived as examples.

2.2. Plastic hinge with linear softening and without axial forces
The idealization of a softening hinge, without axial forces, proposed by Bazant and Kazemi (1994), and

considered in Jirasek (1997), (see Fig. 2a) can be included in the precedent framework. The hinge presents
linear softening as a function of the plastic rotation, although not as a function of the plastic work. The
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Fig. 2. (a) Plastic hinge with linear softening in plastic rotations and (b) plastic hinge with nonlinear softening.
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behavior described in Fig. 2a is obtained by the following expressions for the yield function f and the

hardening—softening term #4:
1

7=l = e i = (2 = 20)) = @)

2.3. Plastic hinge with sinusoidal softening and without axial force

The more realistic behavior shown in Fig. 2b can be represented by:

f=|m|—(m,+h); h=(m>— (wb-— cos(c)mu)z)% —m,

1 : S
b=—(n—c¢); c¢=arcsin (ﬂ) ®
Per my

The behavior presented in Fig. 2b, describes the moment on the hinge as a sinusoidal function of the plastic
rotation.

2.4. Plastic hinge with axial forces and linear softening in bending

In order to determine localization conditions under axial forces, the following expression of the yield
function will be considered:

() ) e

where o, f§, m, and n, are constants. The last parameter represents the yield axial force of the cross section.
In the case of a rectangular cross section, « = 2/2 and f = 2.

It can be noticed that only softening under bending is being considered. The hardening term # is again
characterized by

h= <m (Perte — 2w)> —m, (7)
pcr

so that, for zero axial forces, the model (6) and (7) describes a plastic hinge with linear softening as the one

considered by Bazant and Kazemi (1994) and Jirdsek (1997). The yield function and the plastic behavior of

the hinge are represented in Fig. 3.

o=

3. Elastic—plastic frame members with softening hinges

Let us consider a planar frame member between nodes i and j. The generalized displacements, or degrees
of freedom, of the element are given by the matrix u' = (u;, v;, 0;,u;,v;,0;) (see Fig. 4a). This matrix and the
generalized strain matrix ®' = (¢, ¢ ,0) (see Fig. 4b) define the kinematics of the frame member. It can be
noticed that in a rigid body transformation of the frame member, the strain matrix is nil even if the dis-
placement matrix is not. The relationship between displacements and strains is given by the following
kinematic relation:

in o

2]
<}
B3

08 o 1 _ sina cos

0

. L L X L
— . — Sin o CoS o SIn o cos o
®=Bu;, B=| o - 0 - L 1 (8)
cosae smmoe 0 —cosa —sino O

The variable conjugated to the strain matrix is the generalized stress matrix M' = (m;, m;, n) (see Fig. 4c).
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Fig. 3. (a) Yield function in the generalized stresses space (o« = 2/2 and ff = 2), (b) moment as a function of the plastic rotation for
different values of the axial force and (c) axial force as a function of the plastic elongation.
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Fig. 4. (a) Generalized displacements of a frame member, (b) generalized deformations and (c) generalized stresses.

The behavior of the frame member is completely defined by the introduction of the generalized con-
stitutive law that relates generalized stresses and strains. In the case of an elastic frame member, this
relation is, of course, given by:

M = So 9)
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where S is the local stiffness matrix of the frame member. In order to focus on bifurcations due to local-
ization only, the geometrically nonlinear effects are neglected and the local stiffness matrix S has the
conventional form:

461 2EL )
L L

s=|% % 0 (10)
0 0 %

where E is elasticity modulus, 4 the area of the cross section, / is the inertia and L the length of the frame
member.

In the case of an elastic—plastic frame member, the conventional lumped plasticity representation is
adopted (see Fig. 5). The plastic strain matrix of a frame member is now introduced as: (DL = (¢7, f7 o)
where ¢P and (l);’ are, respectively, the plastic rotations of plastic hinge i and plastic hinge j. 6" is the
permanent elongation of the chord that results from adding the respective values at the plastic hinges i and j
(6" = o} + 7).

An additive decomposition of the total strains into an elastic part (generalized strains of the elastic
beam-column) and the plastic part (generalized strains of the plastic hinges) is assumed:

O =0 + O (11)

Taking into account that the elastic strains obey the elasticity law (9), the state law of an elastic—plastic
frame member can be written as:

M =S(® - @7) (12)

The behavior of the hinges i and ; is defined by the yield functions f; = fi(m;,n,w;)<0 and
fi = fi(m;,n,w;) <0. Where the terms w; and w; represent the plastic work of, respectively, hinges i and ;.
The normality rule for both hinges leads to:

“om;’ ~ Y om;’ P a o (13)

o =1 ¢
where 4; and 4, are the plastic multipliers of the hinges. The relationship between plastic work and plastic
multipliers can be written as:

Wi = Zili(mi, n, wi); W = A;l;(mj,n,w;) (14)
where
B @f,- 6f B af/ 6}’

The set of equations (8) and (12)—(15) defines a finite element that can be included in the library of any
conventional structural analysis program.

plastic hinges

o ~

elastic beam-column

Fig. 5. Lumped plasticity model of a frame member.
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4. Analysis of the uniqueness of the member response by the method of Nguyen and Bui
4.1. Localization in the general case

In this section, the uniqueness of the solution of the problem defined in Section 3 will be analyzed. The
uniqueness conditions can be obtained from the equations that express the plastic multipliers as a function
of the strain rate or the displacement rate. The procedure to derive these equations is now described.

The rate of generalized stresses is given by:

M = S® — S®° (16)

The normality rule (13), the evolution law of the plastic work (14) and the consistence conditions 7i<0
and f; <0, are written in matrix notation as follows:

. OF! oF [ZL o0 & A
®°=_— A wh — =" 4 A= 17
TN here O [0 u G M a7
W=LA whereW= |"| L=|% O (18)
= where W = S i
. OF oF . £1 oF [&£ 0
F=—M < here F= |71, ——=|™ . 19
M +aWW 0 where L,J W [O o (19)
The combination of (17)-(19) leads to the following inequality:
OF oF  OF' OF
< — = S§— _ —
D<CA where D = M —Sd; C= aMS M 3w L (20)

Thus, the problem of the computation of the plastic multipliers as a function of the total strain rate and the
state of the member is defined as follows:

{lf A>0 Cnli+ C12;\,/ =D . { if )uj >0 Cyuki+ CZQ;»./' =D,

lf j’i == 0 C]z)\.j > Dl lf ;L,/ - 0 C21)\.i > D2 (21)

It can be noticed that (21) corresponds to the Euler conditions of the following minimization problem if
the matrix C is symmetric (see Lions, 1968):
minJ =IA'CA—AD; A=0 (22)

This problem has a unique solution if the matrix C is positive definite (J is then a convex function, Lions,
1968), i.e. if its eigenvalues are positive. Thus, the uniqueness condition for the problem (22) can be written as:
Cqp>0 (23)

where Cy; is the smallest eigenvalue of the matrix C. If Cyy is negative or nil, there can be more than one
solution for the plastic multipliers for a given set of strain rates. Thus, the surface that divides the zone of
uniqueness from the localization zone is given by:

Ci=0 (24)
It can be noticed that the following equation is valid at the surface (24):
Det(C) =0 (25)

which reminds the localization condition of a continuum.
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Alternatively, the plastic multipliers can be expressed as a function of the generalized displacements by
using the kinematic equation (8). Then, the inequality (20) becomes:

oF oF _OF' OF
< = - — -
E<CA where E 5 SBu; C = 3 —S 5 5 L (26)

which, of course, does not change the uniqueness condition (23).
4.2. Localization in a frame member with linear softening and without axial forces

Let us consider the model defined by the yield function (4). Then, the matrix C becomes:
4E] dh(w;) 2EI of; af,
L " L 0m; om;
2FEI of; 6fj 4E] dh(w;)
L om; Om; L " dw;

C= (27)

The localization conditions when both plastic hinges are active will be considered. Thus, the moment m;
and m; can be expressed as a function of the plastic work from the equations f; = 0 and f; = 0.

\/pcrme (_pcrme - 2Wz) . \/pcrme(pcrme - 2W1)
|mi| = s ml =

pCl' pCl'

(WA

(28)

The computation of the terms dtwi) and dh “’ from the hardening function (4) and the evaluation of the
smallest eigenvalue of matrix C lead to the followmg uniqueness condition:

CH:———">0 (29)

This is, of course, the result presented in Jirasek (1997). If Cy; is equal to zero or negative, there may be
three different solutions for the problem (20). They are characterized by 4; > 0, 4; > 0 (softening in both
hinges), 4, = 0, 4; > 0 (unloading in hinge i and softening in hinge ) and 4; > 0, 4; = 0 (softening in hinge i
and unloading in hinge ;). The result (29) can be interpreted as follows: if the length of the frame member
exceeds the critical value given by (29) there will appear bifurcated solutions with localization at the frame
member level.

4.3. Localization in the case of nonlinear isotropic softening without inelastic shortening

For any hardening function /4, the smallest eigenvalue of the matrix C, as defined by (27), is given by:

C4EL 0+ 0, (0= 0)\* | (2E1Y
Cn = I + 3 ) + i3 (30)
where Q; = m; V‘V‘ and Q; =
in Fig. 6.
It can be noticed that the curve Cy; = 0 presents two asymptotes given by: 0; = —* and Q; = — L. The

intersection of the curve Cyy = 0 with the line O; = Q; occurs at the point (— 2L, — o #1) which results again
in the Jirasek uniqueness condition.

The localization domain for the particular case of sinusoidal softening is shown in Fig. 7. The three
curves that appear in the figure correspond to the condition Cy; = 0 for different relationships between EI/L
and m, /p.; (specifically 0.3, 0.5 and 0.7). The curves are represented in the space of plastic work of both
hinges. In this case, no localization is possible for nil plastic work since the hinge experiences first a process
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Fig. 6. Localization domain with no axial forces.
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Fig. 7. Localization domain for sinusoidal hardening.

4.4. Localization in a frame member with axial forces and linear softening in bending
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3969

of hardening. The uniqueness zone is then included between the origin and the corresponding curve. It can
be noticed that the uniqueness domain reduces its size when the relation between E£7/L and m, /p.; decreases.

The last example of this section corresponds to a frame member with inelastic shortening and plastic
rotations as described by the yield function (6). As aforementioned, this expression leads to the linear
softening case when the axial forces are nil. Therefore, there may be localization when both hinges are
active (f; = 0 and f; = 0) but there is still no plastic dissipation (w; = 0 and w; = 0). This is the case that will
be considered in this section. Additionally, if a rectangular cross section is analyzed (x = 2/2 and f = 2),
the expression of Cy; is given by:

(31)
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A«

0.5

Fig. 8. Variation of the factor k(n).

and the inequality Cy; > 0 leads to the following relationship between EI/L and m,/p.:

El M, 1 (n* —n*)

—>k(n)—; k(n) =z—+—F— 32

Lk k=5 (32)
It can be noticed that for n = 0, the criterion Cy; > 0 results again in (29). The graph of k(n) can be seen in
Fig. 8.

If the axial force tends to n,, localization can occur for increasingly smaller values of the moment on the
hinge. It is also noted that the localization criterion does not depend on the axial stiffness of the member.
This is due to the fact that there is no hardening function associated to the axial forces in the yielding
function (7). As a result, a particularly simple expression is obtained. This is not always the case. If full
isotropic hardening is considered, the localization criterion depends on both stiffness parameters and it
is very difficult to evaluate qualitatively the corresponding analytical expression. A numerical study of
each particular model is then needed.

5. Localization in framed structures
5.1. Equilibrium equations

The strain—displacement relationship (8) and the generalized constitutive laws (12)—(15) describe only the
behavior of a frame member. In order to carry out a localization analysis of a framed structure, the
introduction of an equilibrium equation is also required. The internal or deformation power of a frame
member is given by:

P =M® (33)
The external power is defined by the introduction of the matrix of external forces P, then:
P =PU (34)

where the matrix U has the nodal displacements of the entire frame. Thus, the principle of virtual power
implies:

Zm:Mtcb* = (iM%) U =P'U YU ie. iB‘M =P (35)

b=1 b=1 b=1
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It can be noticed that with this notation, the analysis of framed structures has the same form of the
mechanics of a continuum. That is, in terms of ““stresses”, “‘strains”, ‘“‘strain—displacement relationship™,
“constitutive laws” and “‘equilibrium equations”. In this way, the similarities and differences between

localization in a continuum and in a framed structure can be more easily appreciated.
5.2. Localization analysis in a simple frame

In this section, a very simple structure will be considered (see Fig. 9). In some aspects, this example may
be representative of what happens in a node of a frame under lateral forces.

A simply supported beam is subjected to vertical displacements v in the column. The structure will be
modeled using the frame elements A and B between, respectively, the nodes 1, 2 and 3, 4. The equilibrium
equations (35) in terms of the stress rates give:

n'11:O; l’}’l4:07 m2+m3:0, m;—mzzPL (36)
the strain—displacement relationship (8) for this problem leads to:

. b . b
=240 ——— 490 37
o 7 +0; N 7 + (37)
where 6 is the rotation of the column. The constitutive law in terms of stress and strain rates can be written
as:

¢y = Fiatin + Fooriny o T = Kad,
! . .oy le. P2 where Ky = 1/Fy and K = 1/F: 38
O3 = Fisins + Faating i3 = Kby A [Fn B /Fs3 (38)

where the explicit expression of Fi,, F», F33, F3, and Ky and Kp can be obtained from the elastic stiffness
matrix S and the yield functions defined in Sections 2 and 3. A representation of the constitutive laws (38)
can be seen in Fig. 10. Additionally a graphical interpretation of the equilibrium equation 7, + 13 = 0 can
be seen in the same figure. It can be noticed that this expression imposes the same moment (in absolute
value) on both sides of the column. Therefore, if the state of the frame members A and B are represented by
the points (m,, ¢,) and (—ms, — ;) in the graphs of Fig. 10 then both points must lie on the same horizontal
line.

It can be shown, by algebraic manipulation of the expressions (36)—(38), that the rotation 0 and force
P rates are given by:

(Ka —KB)%Jr (Ka + K3)0 = 0

(KA+KB)%+ (Ka — Kp)0 = —PL

1 2,_L|; 4
[ A |

=1 T_ﬁl

Fig. 9. A simple frame as an example of the behavior of a joint in a large structure.
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Fig. 10. Constitutive laws for the two-element frame.

Assume that the points (m,, ¢,) and (—ms3, —¢;) are before the peak of the curves in Fig. 10. Then, it is clear
that there is only one solution that satisfies the constitutive laws and the equilibrium equations at the same
time. This solution is given by:

Ka=Kg>0;  0=0; P:_(KA+KB)1%§

However, if the points are after the peak (see Fig. 11a), it is clear that there are three possible solutions: the

one represented in (40) and two others with localization in the frame element A or in the frame element B.

Assuming localization in the element A (see Fig. 11) this solution is given by:
Ky —Ka . : —4KpKa

Ka <0; Ky > 0; 9:7& P=——°-90
A B (Ka + Kp)L (Ka + Kg)L2

(40)

(41)

It can be noticed that the requirements for this solution are Kx <0 and K + K # 0. Other simple
structures can be analyzed with the same qualitative results of this example.

5.3. Localization in a node and localization in a frame member

In the previous example, localization is possible even if the uniqueness condition (23) is verified. The
explanation of this apparent contradiction is that the criterion discussed in Section 4 is a condition of
localization within a frame member (the transfer of energy dissipation occurred through a frame member)
and the localization presented in the previous example occurred in a node (the transfer of energy dissipation
occurred through a node).

/N, Ka /}
\
‘\4 Kg 4 Element A

Bifurcated —p

unloading

Element B

Fundamental —-+ loading

Sv

(b)

Fig. 11. (a) Bifurcated and fundamental solutions and (b) localization in hinge A.

@) ~02
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For the analysis of localization in a frame member only the constitutive equations are needed; in the case
of localization in a node, equilibrium as well as kinematic equations are also required. Therefore, the
analysis of localization in a node is formally similar to the case of localization in a continuum. Remember
that in a continuum, the equations for localization analysis are the Maxwell compatibility conditions (a
kinematic relationship), the equilibrium equation across the discontinuity surface and the constitutive laws.
There is no equivalent of localization in a frame member using the continuum framework. The reason is
that, usually, it is assumed that the constitutive law must always define a unique relationship between
stresses and the history of strains. There is no physical support for this kind of assumption in the case of a
framed structure. Thus a second class of localization is possible in frames and has been the subject of this

paper.

5.4. Analysis of localization in a node

A general criterion of localization in a node is not yet available in the literature. Only particular cases as
the one presented in Section 5.2 have been treated. However, global criteria of uniqueness and stability for
elastic and elastic—plastic structures as well as damage mechanics do exist in the literature (see for instance
Koiter, 1945; Budiansky, 1974; Hill, 1978; Cen and Maier, 1992; Bolzon et al., 1997; Nguyen, 2000;
Cocchetti et al., 2002). As a first approximation, the analysis of localization in a node of a frame with
plastic hinges and softening could be carried out by the consideration of an equivalent nonlinear elastic
structure in the loading mode (this is what is done in a continuum). If a bifurcation is detected by the
consideration of the global problem and the localization criterion (23) is not detected, then localization can
only occur in a node since bifurcations of geometrical nature are not possible in the framework considered
in this paper. However this is not a completely satisfying approach and a deeper analysis of the localization
problem in a node is important.

A question that naturally arises is if the global criteria of bifurcation include as a particular case the
local criterion of localization at the frame level. The answer is no if the global criterion is based on the
existence of a unique relationship between the strain and the stress rates. For instance the analysis carried
out in Section 5.2 was based on the assumption that such a unique relationship does exist (expressions
(38)). However, it has been shown in Section 5 that if the localization criterion is verified, there is more
than one stress rate that correspond to a given strain rate. Therefore, the validity of the global criteria of
bifurcation remains to be proven when localization at the frame member level is possible. The authors of
this paper do not know of global bifurcation analyses when the constitutive laws do not assure a unique
relationship between stresses and the history of strains. In the absence of global criteria of bifurcation
based directly on the nonlinear constitutive laws instead of the stress and strain rates problem, the only
alternative is the analysis of the frame at both levels: frame member (local level) and the structure (global
level).

5.5. Numerical implications of the localization criterion in a frame member

The numerical analysis of framed structures is usually carried out by a conventional step by step pro-
cedure. The time interval [0, 7] of the analysis is then substituted by a discrete set of times (0,¢,%,...,T).
The analysis at some time ¢, can be performed if the state of the structure at the time #,_; is known. In that
case, the constitutive law and the strain—displacement relationship presented in Section 3 describe a relation
between the stress and the displacement matrices:

M = M(U) (42)
Eqgs. (35) and (42) lead to:
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L(U) = iB‘M(U) ~P=0 (43)

b=1

The resolution of (43) is called “global problem’ and is carried out by the Newton method. Thus for each
iteration of the local problem, the computation of the stresses M as a function of the displacements U is
needed. This computation is denoted “local problem” and in the general case is a nonlinear problem too.

It can be noticed that the localization criterion proposed in Section 4, represents a mathematical analysis
of the local problem. Thus, a complete bifurcation analysis during the numerical resolution of framed
structures should include the study of the global problem by the methods mentioned in the previous section
and the analysis of each local problem by the criterion developed in Section 4.

In a finite element analysis of a continuum, the local problem is solved for each Gauss point of the finite
element mesh. In that case, the localization analysis at the integration point is not needed since the con-
stitutive law is assumed to rule out that possibility. This is not the case of framed structures.

6. Summary and conclusions

It has been shown that the Nguyen and Bui method allows for the determination of a completely general
localization criterion within frame members with plastic hinges, i.e. at the local, frame member level.
Analytical results in the more complicated cases can be obtained with the use of any symbolic manipulator
program, although the results may become unreadable very quickly. In fact, the same method can be used
for the analysis of more general cases than the one considered in this paper, for instance a fully three-
dimensional frame member. This was not the case of this paper because the authors thought that the
fundamental issues could be presented more clearly for two-dimensional frame members.

It is important to underline that this is a localization criterion within a frame member, localization can
also happen at a node of the frame, i.e. there may be localization in the hinge of one of the members
connected to a node while the remaining members unload. This very important case was only marginally
considered in this paper.

By comparison with the continuum mechanics case, it can be noticed that localization in framed
structures exhibits a significant difference. There is one localization mode in the former case; there are two
distinct modes in the latter. The possible interactions between both modes have not been analyzed in this
paper and remain an open problem.
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