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Abstract

This paper proposes a general criterion of localization for frame members. A frame member is assumed to be the

assemblage of an elastic beam-column and two plastic hinges at the ends of the member. Each plastic hinge presents

plastic softening behavior under bending and axial forces. In this case, localization refers to the concentration of plastic

rotation within a plastic hinge while the other one unloads. The localization criterion is obtained from the analysis of

the problem that defines the plastic multipliers of the hinges as a function of the member displacements rate. Then, a

simple uniqueness condition is derived for this problem. If the uniqueness condition is not verified, bifurcated solutions

with localization are possible, hence the localization criterion. This criterion is applied in three particular cases for

which analytical solutions are obtained and discussed. Finally the numerical implications of the localization criterion

are discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Reinforced concrete or steel framed structures can show significant softening if they are subjected to

overloads. In the former case, softening is the result of concrete cracking while in the latter this effect is

mainly due to local buckling. These degrading phenomena: extensive plasticity, cracking and local buckling

can be lumped at plastic hinges (see for instance, Inglessis et al., 2002; Marante and Fl�orez-L�opez, 2003).

In framed structures, as well as in continuum media, softening is associated to the phenomenon of

localization. Localization in framed structures takes the form of transfer of energy dissipation amongst
inelastic hinges, i.e. under monotonic loading, there is a process of unloading in some of the hinges while

the remaining hinges continue to increase their plastic rotations, damage and energy dissipation. In frames,

as well as in continuum media, structural collapse is preceded by localization. Therefore the understanding
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of this phenomenon is very important for the analysis of structures such as buildings or bridges subjected to

earthquake or blast loadings.

Localization in framed structures presents an important difference with respect to the case of a con-

tinuum. In the latter, there has been identified only one localization mode: transfer of plastic strains to a
narrow band with strain rate discontinuities (if time-independent plasticity is being considered). In the case

of frames, the transfer of plastic rotations can occur in two different ways: transfer amongst the hinges

around a node, as indicated in Fig. 1a, or transfer between the hinges in the same frame member (Fig. 1b).

The procedures for the analysis of both kinds of localization effects are different. This paper only considers

the latter case, i.e. localization in a frame member.

Localization in framed structures with plastic hinges has been studied in the past (see Maier et al., 1973;

Bazant and Cedolin, 1991; Bazant and Kazemi, 1994; Bazant and Jir�asek, 1996; Jir�asek, 1997; amongst

others). The present paper takes up the subject considered by Jir�asek (1997). In that paper, the conditions
for localization within a frame member with linear softening and without inelastic shortening were con-

sidered. Then, these results were used to study the postpeak behavior of some simple but representative

structures. The present paper generalizes the results obtained in Jir�asek (1997) by including general non-

linear softening and inelastic shortening effects in the frame member.

All these studies and the present paper deal with the problem of localization due to plasticity. Another

related subject is the problem of localization due to buckling of structures (see for instance Pierre and Plaut,

1989; Zingales and Elishakoff, 2000). In that problem the analysis is carried out in a different framework,

beam theory, and the nonlinearities that produce localization are of geometrical nature.
The procedure followed for localization analysis in the present paper differs from the one used in Jir�asek

(1997). In Nguyen and Bui (1974), a condition for the well-posedness of a quite general class of continuum

plasticity models was proposed. This condition assures that a unique stress rate and internal variable rate

are associated to any given strain rate. In Nguyen and Bui (1974) the problem of framed structures, plastic

hinges or localization was not considered. However, it is shown in this paper that the general procedure

of Nguyen and Bui, if adapted to the frame problem, leads to a simple, general and powerful method for

the analysis of localization in this kind of structures.

The paper is organized as follows. In the second section, a model of the behavior of plastic hinges with
softening is introduced. Three particular cases of plastic hinges within this general framework are pre-

sented. The first case corresponds to the linear softening hinge considered in Jir�asek (1997). The second

example corresponds to a plastic hinge with nonlinear softening, but still without axial shortening. The

third example generalizes the linear model in Jir�asek (1997) by the inclusion of the axial force effect.

In Section 3 of the paper, the equations that describe the behavior of a frame member with two plastic

hinges are described. In Section 4, the condition for localization within a single frame member is derived.
Fig. 1. (a) Localization across a node and (b) localization across a frame member.
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First, the plastic model in the more general case is considered. Later, each one of the three particular cases

of plastic hinges is developed as example.

In Section 5 of the paper, the differences between localization in a frame member and across a node are

shown by the consideration of a simple framed structure and the numerical implications of the results
obtained in this paper are discussed.
2. Plastic hinges with softening under bending and axial forces

2.1. General model

Let us consider a plastic hinge subjected to a bending moment m and an axial force n. Compression

forces are assumed to be positive. The behavior of the plastic hinge is defined by a yield function f with

hardening–softening terms h1, h2, etc. and a normality rule as follows:
f ¼ f ðm; n; h1; h2; . . .Þ; _/p ¼ k
of
om

; _dp ¼ k
of
on

ð1Þ
where _/p is the plastic rotation rate, _dp represents the permanent elongation rate and k is the plastic
multiplier of the hinge. The plastic work w of the hinge is defined by:
_w ¼ m _/p þ n _dp ð2Þ
The hardening terms are assumed to depend on the plastic work:
h1 ¼ h1ðwÞ; h2 ¼ h2ðwÞ; . . . ð3Þ
In the following sections, the localization conditions for three particular cases will be derived as examples.
2.2. Plastic hinge with linear softening and without axial forces

The idealization of a softening hinge, without axial forces, proposed by Bazant and Kazemi (1994), and

considered in Jir�asek (1997), (see Fig. 2a) can be included in the precedent framework. The hinge presents
linear softening as a function of the plastic rotation, although not as a function of the plastic work. The
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Fig. 2. (a) Plastic hinge with linear softening in plastic rotations and (b) plastic hinge with nonlinear softening.
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behavior described in Fig. 2a is obtained by the following expressions for the yield function f and the

hardening–softening term h:
f ¼ jmj � ðme þ hÞ; h ¼ me

pcr

ðpcrme

�
� 2wÞ

�1
2

� me ð4Þ
2.3. Plastic hinge with sinusoidal softening and without axial force

The more realistic behavior shown in Fig. 2b can be represented by:
f ¼ jmj � ðme þ hÞ; h ¼ ðm2
u � ðwb� cosðcÞmuÞ2Þ

1
2 � me

b ¼ 1

pcr

ðp � cÞ; c ¼ arcsin
me

mu

� � ð5Þ
The behavior presented in Fig. 2b, describes the moment on the hinge as a sinusoidal function of the plastic

rotation.

2.4. Plastic hinge with axial forces and linear softening in bending

In order to determine localization conditions under axial forces, the following expression of the yield

function will be considered:
f ¼ m
me þ h

� �a

þ n
ne

� �b

� 1 ¼ 0 ð6Þ
where a, b, me and ne are constants. The last parameter represents the yield axial force of the cross section.
In the case of a rectangular cross section, a ¼ 2=2 and b ¼ 2.

It can be noticed that only softening under bending is being considered. The hardening term h is again

characterized by
h ¼ me

pcr

ðpcrme

�
� 2wÞ

�1
2

� me ð7Þ
so that, for zero axial forces, the model (6) and (7) describes a plastic hinge with linear softening as the one
considered by Bazant and Kazemi (1994) and Jir�asek (1997). The yield function and the plastic behavior of

the hinge are represented in Fig. 3.
3. Elastic2plastic frame members with softening hinges

Let us consider a planar frame member between nodes i and j. The generalized displacements, or degrees

of freedom, of the element are given by the matrix ut ¼ ðui; vi; hi; uj; vj; hjÞ (see Fig. 4a). This matrix and the

generalized strain matrix Ut ¼ ð/i;/j; dÞ (see Fig. 4b) define the kinematics of the frame member. It can be

noticed that in a rigid body transformation of the frame member, the strain matrix is nil even if the dis-

placement matrix is not. The relationship between displacements and strains is given by the following
kinematic relation:
_U ¼ B _u; B ¼
sin a
L � cos a

L 1 � sin a
L

cos a
L 0

sin a
L � cos a

L 0 � sin a
L

cos a
L 1

cos a sin a 0 � cos a � sin a 0

2
4

3
5 ð8Þ
The variable conjugated to the strain matrix is the generalized stress matrix Mt ¼ ðmi;mj; nÞ (see Fig. 4c).
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Fig. 3. (a) Yield function in the generalized stresses space (a ¼ 2=2 and b ¼ 2), (b) moment as a function of the plastic rotation for

different values of the axial force and (c) axial force as a function of the plastic elongation.
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Fig. 4. (a) Generalized displacements of a frame member, (b) generalized deformations and (c) generalized stresses.
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The behavior of the frame member is completely defined by the introduction of the generalized con-
stitutive law that relates generalized stresses and strains. In the case of an elastic frame member, this

relation is, of course, given by:
M ¼ SU ð9Þ
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where S is the local stiffness matrix of the frame member. In order to focus on bifurcations due to local-

ization only, the geometrically nonlinear effects are neglected and the local stiffness matrix S has the

conventional form:
S ¼
4EI
L

2EI
L 0

2EI
L

4EI
L 0

0 0 AE
L

2
4

3
5 ð10Þ
where E is elasticity modulus, A the area of the cross section, I is the inertia and L the length of the frame

member.

In the case of an elastic–plastic frame member, the conventional lumped plasticity representation is

adopted (see Fig. 5). The plastic strain matrix of a frame member is now introduced as: Ut
p ¼ ð/p

i ;/
p
j ; d

pÞ
where /p

i and /p
j are, respectively, the plastic rotations of plastic hinge i and plastic hinge j. dp is the

permanent elongation of the chord that results from adding the respective values at the plastic hinges i and j
(dp ¼ dp

i þ dp
j ).

An additive decomposition of the total strains into an elastic part (generalized strains of the elastic

beam-column) and the plastic part (generalized strains of the plastic hinges) is assumed:
U ¼ Ue þ Up ð11Þ
Taking into account that the elastic strains obey the elasticity law (9), the state law of an elastic–plastic

frame member can be written as:
M ¼ SðU � UpÞ ð12Þ
The behavior of the hinges i and j is defined by the yield functions fi ¼ fiðmi; n;wiÞ6 0 and

fj ¼ fjðmj; n;wjÞ6 0. Where the terms wi and wj represent the plastic work of, respectively, hinges i and j.
The normality rule for both hinges leads to:
_/p
i ¼ ki

ofi
omi

; _/p
j ¼ kj

ofj
omj

; _dp ¼ ki
ofi
on

þ kj
ofj
on

ð13Þ
where ki and kj are the plastic multipliers of the hinges. The relationship between plastic work and plastic
multipliers can be written as:
_wi ¼ kiliðmi; n;wiÞ; _wj ¼ kjljðmj; n;wjÞ ð14Þ
where
li ¼ mi
ofi
omi

þ n
ofi
on

; lj ¼ mj
ofj
omj

þ n
ofj
on

ð15Þ
The set of equations (8) and (12)–(15) defines a finite element that can be included in the library of any

conventional structural analysis program.
plastic hinges

elastic beam-column

Fig. 5. Lumped plasticity model of a frame member.
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4. Analysis of the uniqueness of the member response by the method of Nguyen and Bui

4.1. Localization in the general case

In this section, the uniqueness of the solution of the problem defined in Section 3 will be analyzed. The

uniqueness conditions can be obtained from the equations that express the plastic multipliers as a function

of the strain rate or the displacement rate. The procedure to derive these equations is now described.

The rate of generalized stresses is given by:
_M ¼ S _U � S _Up ð16Þ

The normality rule (13), the evolution law of the plastic work (14) and the consistence conditions _fi 6 0

and _fj 6 0, are written in matrix notation as follows:
_Up ¼ oF

oM

t

K where
oF

oM
¼

ofi
omi

0 ofi
on

0
ofj
omj

ofj
on

" #
; K ¼ ki

kj

	 

ð17Þ

_W ¼ LK where W ¼ wi

wj

	 

; L ¼ li 0

0 lj

	 

ð18Þ

_F ¼ oF

oM
_Mþ oF

oW
_W6 0 where F ¼ fi

fj

	 

;

oF

oW
¼

ofi
owi

0

0
ofj
owj

" #
ð19Þ
The combination of (17)–(19) leads to the following inequality:
D6CK where D ¼ oF

oM
S _U; C ¼ oF

oM
S
oF

oM

t

� oF

oW
L ð20Þ
Thus, the problem of the computation of the plastic multipliers as a function of the total strain rate and the

state of the member is defined as follows:
if ki > 0 C11ki þ C12kj ¼ D1

if ki ¼ 0 C12kj PD1

�
;

if kj > 0 C21ki þ C22kj ¼ D2

if kj ¼ 0 C21ki PD2

�
ð21Þ
It can be noticed that (21) corresponds to the Euler conditions of the following minimization problem if

the matrix C is symmetric (see Lions, 1968):
min J ¼ 1
2
KtCK � KtD; K P 0 ð22Þ
This problem has a unique solution if the matrix C is positive definite (J is then a convex function, Lions,

1968), i.e. if its eigenvalues are positive. Thus, the uniqueness condition for the problem (22) can be written as:
CII > 0 ð23Þ
where CII is the smallest eigenvalue of the matrix C. If CII is negative or nil, there can be more than one

solution for the plastic multipliers for a given set of strain rates. Thus, the surface that divides the zone of

uniqueness from the localization zone is given by:
CII ¼ 0 ð24Þ

It can be noticed that the following equation is valid at the surface (24):
DetðCÞ ¼ 0 ð25Þ

which reminds the localization condition of a continuum.
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Alternatively, the plastic multipliers can be expressed as a function of the generalized displacements by

using the kinematic equation (8). Then, the inequality (20) becomes:
E6CK where E ¼ oF

oM
SB _u; C ¼ oF

oM
S
oF

oM

t

� oF

oW
L ð26Þ
which, of course, does not change the uniqueness condition (23).

4.2. Localization in a frame member with linear softening and without axial forces

Let us consider the model defined by the yield function (4). Then, the matrix C becomes:
C ¼

4EI
L

þ mi
dhðwiÞ
dwi

2EI
L

ofi
omi

ofj
omj

2EI
L

ofi
omi

ofj
omj

4EI
L

þ mj
dhðwjÞ
dwj

2
664

3
775 ð27Þ
The localization conditions when both plastic hinges are active will be considered. Thus, the moment mi

and mj can be expressed as a function of the plastic work from the equations fi ¼ 0 and fj ¼ 0.
jmij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pcrmeðpcrme � 2wiÞ

p
pcr

; jmjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pcrmeðpcrme � 2wjÞ

p
pcr

ð28Þ
The computation of the terms dhðwiÞ
dwi

and
dhðwjÞ
dwj

from the hardening function (4) and the evaluation of the

smallest eigenvalue of matrix C lead to the following uniqueness condition:
CII ¼
2EI
L

� my

pcr

> 0 ð29Þ
This is, of course, the result presented in Jir�asek (1997). If CII is equal to zero or negative, there may be

three different solutions for the problem (20). They are characterized by ki > 0, kj > 0 (softening in both

hinges), ki ¼ 0, kj > 0 (unloading in hinge i and softening in hinge j) and ki > 0, kj ¼ 0 (softening in hinge i
and unloading in hinge j). The result (29) can be interpreted as follows: if the length of the frame member

exceeds the critical value given by (29) there will appear bifurcated solutions with localization at the frame
member level.

4.3. Localization in the case of nonlinear isotropic softening without inelastic shortening

For any hardening function h, the smallest eigenvalue of the matrix C, as defined by (27), is given by:
CII ¼
4EI
L

þ Qi þ Qj

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qi � Qj

2

� �2

þ 2EI
L

� �2
s

ð30Þ
where Qi ¼ mi
dhðwiÞ
dwi

and Qj ¼ mj
dhðwjÞ
dwj

. The domain of localization characterized by CII < 0 is represented

in Fig. 6.

It can be noticed that the curve CII ¼ 0 presents two asymptotes given by: Qi ¼ � 4EI
L and Qj ¼ � 4EI

L . The

intersection of the curve CII ¼ 0 with the line Qi ¼ Qj occurs at the point ð� 2EI
L ;� 2EI

L Þ which results again

in the Jir�asek uniqueness condition.

The localization domain for the particular case of sinusoidal softening is shown in Fig. 7. The three

curves that appear in the figure correspond to the condition CII ¼ 0 for different relationships between EI=L
and mu=pcr (specifically 0.3, 0.5 and 0.7). The curves are represented in the space of plastic work of both

hinges. In this case, no localization is possible for nil plastic work since the hinge experiences first a process
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of hardening. The uniqueness zone is then included between the origin and the corresponding curve. It can
be noticed that the uniqueness domain reduces its size when the relation between EI=L and mu=pcr decreases.

4.4. Localization in a frame member with axial forces and linear softening in bending

The last example of this section corresponds to a frame member with inelastic shortening and plastic

rotations as described by the yield function (6). As aforementioned, this expression leads to the linear

softening case when the axial forces are nil. Therefore, there may be localization when both hinges are

active (fi ¼ 0 and fj ¼ 0) but there is still no plastic dissipation (wi ¼ 0 and wj ¼ 0). This is the case that will
be considered in this section. Additionally, if a rectangular cross section is analyzed (a ¼ 2=2 and b ¼ 2),

the expression of CII is given by:
CII ¼
2pcrn4

e
EI
L � men4

e þ men4

pcrm2
en

4
e

ð31Þ
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and the inequality CII > 0 leads to the following relationship between EI=L and me=pcr:
EI
L

> kðnÞme

pcr

; kðnÞ ¼ 1

2

ðn4
e � n4Þ
n4
e

ð32Þ
It can be noticed that for n ¼ 0, the criterion CII > 0 results again in (29). The graph of kðnÞ can be seen in
Fig. 8.

If the axial force tends to ne, localization can occur for increasingly smaller values of the moment on the

hinge. It is also noted that the localization criterion does not depend on the axial stiffness of the member.

This is due to the fact that there is no hardening function associated to the axial forces in the yielding

function (7). As a result, a particularly simple expression is obtained. This is not always the case. If full

isotropic hardening is considered, the localization criterion depends on both stiffness parameters and it

is very difficult to evaluate qualitatively the corresponding analytical expression. A numerical study of

each particular model is then needed.
5. Localization in framed structures

5.1. Equilibrium equations

The strain–displacement relationship (8) and the generalized constitutive laws (12)–(15) describe only the

behavior of a frame member. In order to carry out a localization analysis of a framed structure, the
introduction of an equilibrium equation is also required. The internal or deformation power of a frame

member is given by:
P �
i ¼ Mt _U� ð33Þ
The external power is defined by the introduction of the matrix of external forces P, then:
P �
e ¼ Pt _U� ð34Þ
where the matrix U has the nodal displacements of the entire frame. Thus, the principle of virtual power

implies:
Xm
b¼1

Mt _U� ¼
Xm
b¼1

MtB

 !
_U� ¼ Pt _U� 8 _U�; i:e:

Xm
b¼1

BtM ¼ P ð35Þ
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It can be noticed that with this notation, the analysis of framed structures has the same form of the

mechanics of a continuum. That is, in terms of ‘‘stresses’’, ‘‘strains’’, ‘‘strain–displacement relationship’’,

‘‘constitutive laws’’ and ‘‘equilibrium equations’’. In this way, the similarities and differences between

localization in a continuum and in a framed structure can be more easily appreciated.

5.2. Localization analysis in a simple frame

In this section, a very simple structure will be considered (see Fig. 9). In some aspects, this example may

be representative of what happens in a node of a frame under lateral forces.

A simply supported beam is subjected to vertical displacements v in the column. The structure will be

modeled using the frame elements A and B between, respectively, the nodes 1, 2 and 3, 4. The equilibrium

equations (35) in terms of the stress rates give:
_m1 ¼ 0; _m4 ¼ 0; _m2 þ _m3 ¼ 0; _m3 � _m2 ¼ _PL ð36Þ
the strain–displacement relationship (8) for this problem leads to:
_/2 ¼
_v
L
þ _h; _/3 ¼ � _v

L
þ _h ð37Þ
where h is the rotation of the column. The constitutive law in terms of stress and strain rates can be written

as:
_/2 ¼ F12 _m1 þ F22 _m2
_/3 ¼ F33 _m3 þ F34 _m4

; i:e:
_m2 ¼ KA

_/2

_m3 ¼ KB
_/3

where KA ¼ 1=F22 and KB ¼ 1=F33 ð38Þ
where the explicit expression of F12, F22, F33, F34, and KA and KB can be obtained from the elastic stiffness

matrix S and the yield functions defined in Sections 2 and 3. A representation of the constitutive laws (38)

can be seen in Fig. 10. Additionally a graphical interpretation of the equilibrium equation _m2 þ _m3 ¼ 0 can

be seen in the same figure. It can be noticed that this expression imposes the same moment (in absolute

value) on both sides of the column. Therefore, if the state of the frame members A and B are represented by
the points (m2;/2) and ð�m3;�/3Þ in the graphs of Fig. 10 then both points must lie on the same horizontal

line.

It can be shown, by algebraic manipulation of the expressions (36)–(38), that the rotation h and force

P rates are given by:
ðKA � KBÞ
_v
L
þ ðKA þ KBÞ _h ¼ 0

ðKA þ KBÞ
_v
L
þ ðKA � KBÞ _h ¼ � _PL

ð39Þ
Fig. 9. A simple frame as an example of the behavior of a joint in a large structure.
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Assume that the points ðm2;/2Þ and ð�m3;�/3Þ are before the peak of the curves in Fig. 10. Then, it is clear
that there is only one solution that satisfies the constitutive laws and the equilibrium equations at the same

time. This solution is given by:
KA ¼ KB > 0; _h ¼ 0; _P ¼ �ðKA þ KBÞ
_v
L2

; ð40Þ
However, if the points are after the peak (see Fig. 11a), it is clear that there are three possible solutions: the

one represented in (40) and two others with localization in the frame element A or in the frame element B.
Assuming localization in the element A (see Fig. 11) this solution is given by:
KA 6 0; KB > 0; _h ¼ KB � KA

ðKA þ KBÞL
_v; _P ¼ �4KBKA

ðKA þ KBÞL2
_v ð41Þ
It can be noticed that the requirements for this solution are KA 6 0 and KA þ KB 6¼ 0. Other simple

structures can be analyzed with the same qualitative results of this example.

5.3. Localization in a node and localization in a frame member

In the previous example, localization is possible even if the uniqueness condition (23) is verified. The

explanation of this apparent contradiction is that the criterion discussed in Section 4 is a condition of

localization within a frame member (the transfer of energy dissipation occurred through a frame member)

and the localization presented in the previous example occurred in a node (the transfer of energy dissipation
occurred through a node).
m2

2 3

-m 3

KA

KB

Bifurcated

Fundamental

unloading 

loading 

Element A 
Element B 

(b)(a) φ φ–

Fig. 11. (a) Bifurcated and fundamental solutions and (b) localization in hinge A.
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For the analysis of localization in a frame member only the constitutive equations are needed; in the case

of localization in a node, equilibrium as well as kinematic equations are also required. Therefore, the

analysis of localization in a node is formally similar to the case of localization in a continuum. Remember

that in a continuum, the equations for localization analysis are the Maxwell compatibility conditions (a
kinematic relationship), the equilibrium equation across the discontinuity surface and the constitutive laws.

There is no equivalent of localization in a frame member using the continuum framework. The reason is

that, usually, it is assumed that the constitutive law must always define a unique relationship between

stresses and the history of strains. There is no physical support for this kind of assumption in the case of a

framed structure. Thus a second class of localization is possible in frames and has been the subject of this

paper.
5.4. Analysis of localization in a node

A general criterion of localization in a node is not yet available in the literature. Only particular cases as

the one presented in Section 5.2 have been treated. However, global criteria of uniqueness and stability for

elastic and elastic–plastic structures as well as damage mechanics do exist in the literature (see for instance

Koiter, 1945; Budiansky, 1974; Hill, 1978; Cen and Maier, 1992; Bolzon et al., 1997; Nguyen, 2000;

Cocchetti et al., 2002). As a first approximation, the analysis of localization in a node of a frame with

plastic hinges and softening could be carried out by the consideration of an equivalent nonlinear elastic

structure in the loading mode (this is what is done in a continuum). If a bifurcation is detected by the
consideration of the global problem and the localization criterion (23) is not detected, then localization can

only occur in a node since bifurcations of geometrical nature are not possible in the framework considered

in this paper. However this is not a completely satisfying approach and a deeper analysis of the localization

problem in a node is important.

A question that naturally arises is if the global criteria of bifurcation include as a particular case the

local criterion of localization at the frame level. The answer is no if the global criterion is based on the

existence of a unique relationship between the strain and the stress rates. For instance the analysis carried

out in Section 5.2 was based on the assumption that such a unique relationship does exist (expressions
(38)). However, it has been shown in Section 5 that if the localization criterion is verified, there is more

than one stress rate that correspond to a given strain rate. Therefore, the validity of the global criteria of

bifurcation remains to be proven when localization at the frame member level is possible. The authors of

this paper do not know of global bifurcation analyses when the constitutive laws do not assure a unique

relationship between stresses and the history of strains. In the absence of global criteria of bifurcation

based directly on the nonlinear constitutive laws instead of the stress and strain rates problem, the only

alternative is the analysis of the frame at both levels: frame member (local level) and the structure (global

level).
5.5. Numerical implications of the localization criterion in a frame member

The numerical analysis of framed structures is usually carried out by a conventional step by step pro-

cedure. The time interval ½0; T � of the analysis is then substituted by a discrete set of times ð0; t1; t2; . . . ; T Þ.
The analysis at some time ta can be performed if the state of the structure at the time ta�1 is known. In that

case, the constitutive law and the strain–displacement relationship presented in Section 3 describe a relation

between the stress and the displacement matrices:
M ¼ MðUÞ ð42Þ
Eqs. (35) and (42) lead to:
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LðUÞ ¼
Xm
b¼1

BtMðUÞ � P ¼ 0 ð43Þ
The resolution of (43) is called ‘‘global problem’’ and is carried out by the Newton method. Thus for each
iteration of the local problem, the computation of the stresses M as a function of the displacements U is

needed. This computation is denoted ‘‘local problem’’ and in the general case is a nonlinear problem too.

It can be noticed that the localization criterion proposed in Section 4, represents a mathematical analysis

of the local problem. Thus, a complete bifurcation analysis during the numerical resolution of framed

structures should include the study of the global problem by the methods mentioned in the previous section

and the analysis of each local problem by the criterion developed in Section 4.

In a finite element analysis of a continuum, the local problem is solved for each Gauss point of the finite

element mesh. In that case, the localization analysis at the integration point is not needed since the con-
stitutive law is assumed to rule out that possibility. This is not the case of framed structures.
6. Summary and conclusions

It has been shown that the Nguyen and Bui method allows for the determination of a completely general

localization criterion within frame members with plastic hinges, i.e. at the local, frame member level.

Analytical results in the more complicated cases can be obtained with the use of any symbolic manipulator

program, although the results may become unreadable very quickly. In fact, the same method can be used
for the analysis of more general cases than the one considered in this paper, for instance a fully three-

dimensional frame member. This was not the case of this paper because the authors thought that the

fundamental issues could be presented more clearly for two-dimensional frame members.

It is important to underline that this is a localization criterion within a frame member, localization can

also happen at a node of the frame, i.e. there may be localization in the hinge of one of the members

connected to a node while the remaining members unload. This very important case was only marginally

considered in this paper.

By comparison with the continuum mechanics case, it can be noticed that localization in framed
structures exhibits a significant difference. There is one localization mode in the former case; there are two

distinct modes in the latter. The possible interactions between both modes have not been analyzed in this

paper and remain an open problem.
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